Multiple-conclusion LP and default classicality

USE ONLY RSL PUBLISHED VERSION FOR QUOTING

JC BEALL
University of Connecticut and University of Otago

Abstract. Philosophical applications of familiar paracomplete and paraconsistent logics often rely on an idea of ‘default classicality’. With respect to the paraconsistent logic LP (the dual of Strong Kleene or K3), such ‘default classicality’ is standardly cashed out via an LP-based non-monotonic logic due to Priest (1991, 2006a). In this paper, I offer an alternative approach via a monotonic, multiple-conclusion version of LP.

§1. Introduction. The logic LP is the dual of the well-known logic K3 (viz., Strong Kleene).\(^1\) This logic, like K3, has found prominent applications in philosophy, particularly with respect to paradoxical phenomena (Beall, 2009; Brady, 2006; Field, 2008; Kripke, 1975; Priest, 2006a,b). In such applications, the background picture is one of ‘default classicality’. The basic thought is that classical logic is ‘right’ (in some sense) for the broad array of ‘normal’ cases; however, various ‘abnormal’ (e.g., paradoxical) phenomena motivate a slightly weaker logic. In short, the thought is that classical logic is the default logic, and the weaker logic kicks into gear when necessary.

The chief question is how to understand this ‘default classicality’, particularly in the LP case. We may distinguish two (closely related) questions:

- How does the logic reflect default classicality?
- How does use of the logic reflect defeasibility?

In the K3 case, the answers are relatively clear: adding appropriate premises of the form \(A \lor \neg A\) in effect collapses K3 into classical logic; and one’s use of the logic invokes extra-logical principles that generally warrant the additional premises. But LP is different, at least with respect to the first question: there is no corresponding adding-to-the-premises recipe for LP that yields the target ‘collapse’. (This will be apparent from the account of LP in §2.1.) And so another route towards the questions is required for LP theorists.

The standard route, advanced by Priest (1991, 2006b), answers both questions by constructing an LP-based non-monotonic logic, namely, minimally inconsistent LP. This logic both formally models default classicality and similarly purports to thereby model ‘defeasible reasoning’.

\(^1\) LP was first discussed, under a different label, by Asenjo (1966), but later independently discovered and widely advanced by Priest (1979, 1984). A more leisurely discussion of K3, LP, and a familiar family of non-classical logics is widely available (Beall, 2010; Beall & van Fraassen, 2003; Priest, 2008; Restall, 2005a). While much of what I say applies, dually, to the K3 case—e.g., a dual version of Theorem 3.13 is available—my own paraconsistent interests (Beall, 2009) guide my focus here on LP.
I have no substantive objections to the non-monotonic approach, but I nonetheless propose a different—and perhaps simpler—approach in terms of a monotonic, multiple-conclusion logic that I shall call LP+\(^2\). The thought is simple: just as the K3 theorist adds appropriate premises of the form \(A \lor \neg A\) to ‘return to classical logic’, the LP+ theorist does the dual—namely, adds appropriate sentences of the form \(A \land \neg A\) to the conclusion set.

In §2, I present LP+. Towards answering the first question concerning default classicality, §3. presents a simple though crucial theorem concerning a relation between LP+ and CPL+ (i.e., the corresponding multiple-conclusion version of classical propositional logic). §4. takes up the second question concerning default consistency and reasoning, suggesting a general sense in which multiple-conclusion logic(s) leave us with ‘defeasible inferences’.

§2. Multiple-conclusion LP. I first present (single-conclusion) LP, and then turn to the multiple-conclusion generalization LP+. Because of the simplicity of the LP model theory, I rely throughout on ‘semantic’ characterizations of the logics (except in the appendix, where I briefly present an adequate sequent system).

The syntax (throughout) is that of standard CPL (i.e., classical propositional logic), where atomics are propositional variables.\(^3\) Throughout, I let \(S\) be the set of all sentences, \(p\) any atomic in \(S\), and \(A\) any (atomic or molecular) element of \(S\), with \(\neg\) (unary), \(\lor\) (binary) and, with redundancy, \(\land\) (binary) the only primitive connectives—with other standard binary connectives (e.g., \(\supset\), \(\equiv\)) defined as usual.

2.1. LP. The (single-conclusion) logic LP may be characterized ‘semantically’ as follows. Our sentences are interpreted via all (total) valuations \(v: S \rightarrow \{1, 0, 5\}\) that obey the following clauses:

- \(v(\neg A) = 1 - v(A)\)
- \(v(A \lor B) = \max\{v(A), v(B)\}\)
- \(v(A \land B) = \min\{v(A), v(B)\}\)

We let \(V_{lp}\) be the set of all such LP valuations.

Definition 2.1 A valuation \(v \in V_{lp}\) satisfies \(A\) iff \(v(A) \in \{1, 5\}\).

Definition 2.2 A valuation \(v \in V_{lp}\) satisfies a set \(X \subseteq S\) of sentences iff \(v\) satisfies every \(A \in X\).

With these definitions in hand, we define the validity relation—for present purposes, the logic—in the usual way.

Definition 2.3 (LP) \(X \models_{lp} A\) iff every \(v \in V_{lp}\) that satisfies \(X\) satisfies \(A\).

\(^2\) On terminology: a monotonic logic is one such that adding to the premise set does not take you from a valid argument to an invalid argument. For present purposes, I simply generalize this notion of monotonicity to cover multiple-conclusion: adding to either a premise set or a conclusion set doesn’t take you from a valid argument to an invalid argument. (I do not dwell on this definition, but assume it in the background.)

\(^3\) I ignore (minor) complexities involved in adding predicates or names. While I focus on the propositional level in this paper, the discussion—and results—should carry over to the predicate-cum-quantifier level (though proofs would require more complexity).
2.2. A few notable features. Here, I briefly note some of the distinguishing features of LP. (The reader may consider the dual K3 features for comparison.)

2.2.1. Notable invalidities. LP is a paraconsistent logic: \(A \land \neg A \nvdash_{lp} B \). Any valuation \(v \) such that \(v(A) = 0.5 \) and \(v(B) = 0 \) serves as a counterexample.

Moreover, disjunctive syllogism fails in LP: \(\neg A, A \lor B \nvdash_{lp} B \). Again, the above counterexample suffices: \(v(A) = 0.5 \) and \(v(B) = 0 \).

Similarly, ‘material modus ponens’ fails, where \(A \supset B \) is the material conditional defined as \(\neg A \lor B \). In particular, we have \(A, A \supset B \nvdash_{lp} B \). The counterexample (mentioned twice) above suffices again here.

2.2.2. Notable validities. While LP is paraconsistent, it is not paracomplete. That LP is not paracomplete comes from the fact that \(B \models_{lp} A \lor \neg A \).

An important fact, related to the ‘default-classicality’ idea, is that LP is a sublogic of CPL. Fact 1 If \(X \models_{lp} A \) then \(X \models_{cpl} A \).

That this is so is evident from the fact that, if you remove the middle value from LP’s set of semantic values (i.e., co-domain of the LP valuations), the resulting set of valuations is the familiar set \(\mathbb{V}_{cpl} \) of CPL valuations.

2.3. \(LP^+ \). We achieve \(LP^+ \), the multiple-conclusion generalization of LP, by generalizing the validity relation from the standard set-to-sentence relation to a set-to-set relation. Instead of validity being a subset of \(\wp(S) \times S \), we now take it to be a binary relation on \(\wp(S) \), a subset of \(\wp(S) \times \wp(S) \).

The semantics for LP are all we need to define \(LP^+ \), but some additional definitions are convenient:

Definition 2.4 A valuation \(v \in \mathbb{V}_{lp} \) dissatisfies \(A \) iff \(v(A) = 0 \).

Definition 2.5 A valuation \(v \in \mathbb{V}_{lp} \) dissatisfies a set \(X \subseteq S \) of sentences iff \(v \) dissatisfies every \(A \in X \).

With these definitions in hand, we define the validity relation—for present purposes, the logic—in the usual way, where, as throughout, \(X \) and \(Y \) are subsets of the set \(S \) of sentences.

Definition 2.6 (\(LP^+ \)) \(X \vdash_{lp}^+ Y \) iff no \(v \in \mathbb{V}_{lp} \) satisfies \(X \) and dissatisfies \(Y \).

2.3.1. Notable invalidities. All of the single-conclusion invalidities remain, where a single-conclusion argument is one in which the conclusion set is a singleton. Any philosophical virtues of LP, the single-conclusion variant of \(LP^+ \), thus carry over into \(LP^+ \), which remains paraconsistent and non-paracomplete.\(^5\)

\(^4\) This is simply the standard multiple-conclusion insight, which enjoys often-noted mathematical elegance over its single-conclusion counterpart. My interest here is in some of the philosophical applications of the insight, particularly to the idea of default classicality for target non-classical logics.

\(^5\) In this setting, we say that a logic \(\vdash \) is paraconsistent just if \(\Gamma, A, \neg A \not\vdash B, \Delta \), and paracomplete just if \(\Gamma, B \not\vdash A, \neg A, \Delta \), where \(\Gamma \) and \(\Delta \) are subsets of \(S \) (sentences).
2.3.2. Notable validities. What is notable—and explicitly noted in Theorem 3.13 below—is that for each of the noted invalidities in LP, there is a corresponding LP validity that arises from, in effect, treating the ‘inconsistency’ or ‘gluttiness’ of one of the premises (i.e., one of the elements of the premise set) as an element of the conclusion set—one of the ‘options’, so to speak, that the premise set yields in the conclusion set. In particular, we have the following validities corresponding to the LP invalidities noted in §2.2.1. (Proofs are left as exercise.)

• \(\{ A \land \lnot A \} \not\vDash_{lp} B \) but \(\{ A \land \lnot A \} \vDash_{lp}^{+} \{ B, A \land \lnot A \} \).
• \(\{ \lnot A, A \lor B \} \not\vDash_{lp} B \) but \(\{ \lnot A, A \lor B \} \vDash_{lp}^{+} \{ B, A \land \lnot A \} \).
• \(\{ A, A \supset B \} \not\vDash_{lp} B \) but \(\{ A, A \supset B \} \vDash_{lp}^{+} \{ B, A \land \lnot A \} \).

These validities reflect a pattern captured more generally in a simple but, for target philosophical purposes, central theorem concerning CPL and LP.

§3. Default classicality: CPL and LP. CPL may be defined by taking the ‘semantics’ for LP and fixing the set \(V_{cpl} \) of CPL valuations to a proper subset of the set \(V_{lp} \) of LP valuations. In particular, \(V_{cpl} \) is simply the set of LP valuations whose range is \(\{ 1, 0 \} \). With this in mind, the generalization to CPL, multiple-conclusion CPL, is straightforward.

3.1. CPL. The multiple-conclusion generalization of CPL is achieved in the same way that the corresponding generalization to LP is achieved. In fact, all of the foregoing definitions apply; and the definition of validity is as follows.

Definition 3.7 (CPL)\(X \vDash_{cpl}^{+} Y \) iff no \(v \in V_{cpl} \) satisfies \(X \) and dissatisfies \(Y \).

For present purposes, what is important about this generalized form of classical (propositional) logic is its relation to the corresponding generalization of LP. In particular, that classical logic, so understood (in multiple-conclusion form), is the default logic of—the otherwise all-purpose, weaker—logic LP is conspicuous from the result below.

3.2. CPL and LP. Throughout, we let \(X \) be any subset of \(S \), and \(p \) any atomic in \(S \). We define (standard) notions of, respectively, a valuation restricted to a subset of its domain; a set of subsentences of a sentence; a set of subsentences of a set of sentences; the set of atomic sentences in a set of sentences; and an ‘atomic inconsistency set’ corresponding to a set of sentences:

Definition 3.8 We let \(v|Z \) be the restriction of \(v \) to \(Z \) as standardly defined.

Definition 3.9 Let \(\sigma(A) \) be the set of subsentences of \(A \), standardly defined.

Definition 3.10 Let \(\sigma(X) \) be \(\{ B : B \in \sigma(A) \text{ for each } A \in X \} \).

Definition 3.11 Let \(\alpha(X) = \{ p : p \text{ is atomic and } p \in \sigma(X) \} \).

Definition 3.12 Let \(\iota(X) = \{ p \land \lnot p : p \in \alpha(X) \} \).

An example, with respect to Definition 3.12, is \(\iota(X) = \{ p \land \lnot p, q \land \lnot q, r \land \lnot r \} \), which is the ‘atomic inconsistency set’ corresponding to any set \(X \) for which \(\alpha(X) = \{ p, q, r \} \), for example \(X = \{ \lnot p, \lnot (r \lor q) \} \) or the like.

Theorem 3.13 \(X \vDash_{cpl}^{+} Y \) iff \(X \vDash_{lp}^{+} Y \cup \iota(X) \).
Fact 3 If \(\phi(X) \neq \emptyset \), then every \(v \in V_{\text{cpl}} \) dissatisfies \(\phi(X) \), that is, no CPL valuation satisfies anything in \(\phi(X) \). If \(\phi(X) = \emptyset \), then \(Y \cup \phi(X) = Y \), and so Fact 2 suffices for the result.

LRD. Suppose that \(X \models^{+}_{\text{cpl}} Y \) but, for reductio, \(X \not\models^{+}_{\text{ip}} Y \cup \phi(X) \), in which case there’s some \(v \in V_{\text{ip}} \) such that \(v \) satisfies \(X \) but \(v \) dissatisfies \(Y \cup \phi(X) \). If \(v \in V_{\text{cpl}} \), then, by the initial supposition, \(v \) satisfies something in \(Y \) and, hence, satisfies something in \(Y \cup \phi(X) \). So, \(v \in V_{\text{ip}} \setminus V_{\text{cpl}} \). Now, either there’s some \(v' \in V_{\text{cpl}} \) such that \(v|_\alpha(X) = v'|_\alpha(X) \) or not. In the latter case, \(v(p) = 0.5 \) for some \(p \in \alpha(X) \), and so \(v(p \land \neg p) = 0.5 \) by LP (semantic) conditions; and so \(v \) satisfies something in \(\phi(X) \) and, in turn, satisfies something in \(Y \cup \phi(X) \). Contradiction. In the former case, where there is some \(v' \in V_{\text{cpl}} \) such that \(v|_\alpha(X) = v'|_\alpha(X) \), we immediately get \(v|_X = v'|_X \) by the following fact:

Fact 4 Let \(v \in V_{\text{ip}} \) and \(v' \in V_{\text{cpl}} \). For any \(X \subseteq S \), if \(v|_\alpha(X) = v'|_\alpha(X) \), then \(v|_X = v'|_X \). (Proof: exercise.)

But, then, since \(v \) satisfies \(X \), so too does \(v' \), in which case, since \(v' \in V_{\text{cpl}} \) and \(X \models^{+}_{\text{cpl}} Y \), we have that \(v' \) satisfies something in \(Y \) and, hence, \(v' \) satisfies something in \(Y \cup \phi(X) \). But, then, so does \(v \). Contradiction. \(\square \)

Parenthetical remark. I am grateful to Graham Priest who, in comments on an earlier draft, pointed to a related result that he establishes concerning single-conclusion LP (Priest, 2006b, Ch. 8). The proof of Priest’s result proceeds via the metatheory (invoking, e.g., compactness and the material-conditional deduction theorem). Given that LP may be seen as the limit (singleton-conclusion) case of LP\(^+\), the purely semantic proof that I give for Theorem 3.13 extends to LP.

I should also note that Priest’s result is related to one discussed by Belnap & Dunn (1973), which turns on introducing a sentential constant \(f \) that, informally, may be thought of as the disjunction of all elements of \(\phi(S) \). Both results are more coarse-grained than Theorem 3.13; and one advantage of LP\(^+\) and Theorem 3.13 emerges along these lines by an objection that Belnap and Dunn present against using such (single-conclusion) results for cashing out the ‘default classicality’ idea:

the relevantist [or, for present purposes, LP theorist] generally has more information than a barren disjoined \(f \); he knows, if he has done his homework, which contradiction is at issue.[A]nd so for him, using \(f \), whether suppressed or not, is to lose information. (Anderson et al., 1992, p. 505)

In the LP\(^+\) context, we get more fine-grained information via the already-available \(\phi(X) \) in question. (And we could define a ‘minimally inconsistent conclusion set’ to get even finer-grained information.) Of course, one could similarly add a multitude of more finely grained ‘atomic-inconsistency constants’ (so to speak) to play the role of the already-available family of atomic inconsistency sets \(\phi(X) \), but it is not clear what would be achieved over the LP\(^+\) framework. My own view is that the
LP$^+$ framework is more natural, but ‘natural’ in a sense that, regretfully, I cannot as yet make precise. I leave the matter for future debate. End remark.

3.3. Philosophical application. Theorem 3.13 gives an answer to the first question about default-classicality (without invoking a non-monotonic logic). In short, the theorem above makes plain that CPL$^+$ is our ‘default logic’ in the sense that, except when one or more of the premises is a ‘glut’, what follows from the premise set is precisely what follows according to classical logic (here conceived in multiple-conclusion terms).

§4. Choices: default-classical reasoning. The import of Theorem 3.13 is that the consequences of a premise set are the classical consequences—unless some of the premises are glutty. This is the sense in which the logic exhibits the default-classicality idea.

There is, however, a second question: how is such ‘default classicality’ or ‘default consistency’ to be understood with respect to using the logic? How does such ‘default classicality’ show up in reasoning? This question, I suggest, has a very natural answer that coincides nicely with a perspective on using multiple-conclusion logic in general.

4.1. Logic and choices. Let us assume that logic—or validity—is fundamentally along multiple-conclusion lines, with single(-ton)-conclusion logic the limiting case. What our logic tells us, then, is what sets of sentences follow from what sets of sentences.

How, then, shall we understand what logic provides? I suggest that what logic often gives us is a (conclusion) set of choices. The logic simply tells you that Y follows from X. What you do with the elements—the options—in Y is beyond logic’s rule. (More on this in 4.2.) Of course, given the monotonicity of our logic,6 talk of ‘choices’ is interesting chiefly in what might be called strict-choice validities, that is, a valid argument $\langle X, Y \rangle$ such that there’s no $Z \subset Y$ such that X implies Z. For example, in our target LP$^+$ case,

$$\langle \{\neg q, p \supset q\}, \{\neg p, q \land \neg q\} \rangle$$

is a strict-choice validity: it is LP$^+$-valid, but the given premise set fails to imply any proper subset of the conclusion set. It is in strict-choice validities that choices are ‘real’ (so to speak), though the general suggestion is that all valid arguments provide choices (however degenerate), namely, whatever is in the conclusion set.7

4.2. Choices and extra-logical principles. How, then, do we use logic on this picture? How do we draw a conclusion—make a single choice—from a (conclusion) set of choices? The natural answer is a familiar one: we rely on extra-logical principles—principles of rationality, pragmatic principles, epistemic principles.

6 Recall that monotonicity in this context involves both sides—a fortiori, the conclusion-set side. (In proof-theoretic terms, the present point may be made via weakening on the right.) I am grateful to an anonymous referee for useful comments on this section.

7 Along these lines, one might think of logical truths as dull ‘choices’, namely, those A such that $\{A\} \cup Y$ follows from every (including empty) premise set X, for any $Y \subseteq S$. In LP, such A are precisely the classical logical truths (Priest, 1979); and—as a simple proof shows—the situation is the same for LP$^+$.
When logic gives us a strict choice (i.e., delivers a strict-choice validity), a consistency assumption—perhaps based on rationality, perhaps on something else—guides the choice: reject inconsistency (other things being equal). While the details of such principles might be complicated, the general idea is simple. Why, for example, do we normally infer or ‘choose’ \(q \) via the premise set \(\{\neg p, p \lor q\} \) if, as I’ve suggested, our logic delivers only the (conclusion) set \(\{q, p \land \neg p\} \)? The answer—at least in rough form—involves extra-logical principles: as a first go, reject the inconsistent options! Of course, when, in extraordinary (e.g., paradoxical) cases, our choices keep hitting against evidence for inconsistency, we then return to our original conclusion set of choices, and choose a different option. Such is the defeasibility of inference; such is the defeasibility of inquiry. Logic itself can only take us to our options; it leaves extra-logical principles to guide our choices. Logic itself is monotonic; what we do with the choices that logic gives us is defeasible.

§5. Concluding remarks. LP\(^+\), the multiple-conclusion generalization of LP, reflects the idea of default classicality in a natural—and monotonic—way. With respect to the formal logic itself, LP\(^+\) reflects default classicality via Theorem 3.13. In short: except for various ‘glutty’ or inconsistent phenomena (e.g., paradoxes), what follows from a premise set are precisely its classical consequences.

Logic, qua fundamentally a set-to-set (multiple-conclusion) relation, tells us what sets follow from what sets. But this often leaves us with choices: a single premise set may leave us with the choice between a consistent and an inconsistent option. And here is where the default-classicality feature of reasoning—or using a logic—shows up. Logic often leads us to a choice; it’s only via extra-logical principles that we make our choices. And such principles generally preach against inconsistency. It is only when—in the face of other theoretical pressures (e.g., simplicity, coherence, faithfulness to data, whathaveyou)—inconsistency cannot be avoided that we return to the initial stock of choices and choose an inconsistent option. Such defeasibility is not something that the formal logic itself exhibits; such defeasibility is instead a feature of extra-logical principles guiding theoretical inquiry in general.

8 Lessons of Lewis Carroll (1895) might be construed along these lines, as well as Gilbert Harman’s distinction between logic and inference/reasoning (Harman, 1986). Extra-logical principles of rationality—concerning rejection (Field, 2008; Priest, 2006b; Restall, 2005b) or the like—are common in applications of non-classical logics, though formulating such principles can be hard, as Restall (2004), Priest (2006b)[Ch. 19], and particularly Field (2010)—concerning degrees of belief in multiple-conclusion setting—make plain.
Appendix: a sequent system for LP\(^{+}\). There are various ways to achieve an adequate sequent calculus for LP\(^{+}\).\(^9\) David Ripley (2011) employs ideas from Baaz et al. (a,b) to construct a 3-sided sequent system for LP that, with minor tweaks, yields a 3-sided set-set system for LP\(^{+}\).

An alternative approach towards a fully 2-sided system is to take widely-known tagged tableau systems for LP (Beall & Ripley, 2011; Beall & van Fraassen, 2003; Priest, 2008; Restall, 2005a) and use them to construct a corresponding (cut-free) system for LP\(^{+}\).\(^10\) In particular, use the ‘positive’ tableau tag (say, ‘+’) for left position and the ‘negative’ tag (say, ‘−’) for right. For example, the ‘positive negated conjunction’ rule in such systems directly reflects De Morgan equivalence:

\[
\neg (A \land B), + \\
\neg A \lor \neg B, +
\]

And the same goes for the ‘negative negated conjunction’ rule:

\[
\neg (A \land B), - \\
\neg A \lor \neg B, -
\]

As above, ‘translating’ these rules into 2-sided sequent rules puts the ‘positive’ on the left and the ‘negative’ on the right (and flipping the top-down tableau order to arrive at our target \(\neg \land\) operation in the corresponding sequent rules):

\[
\text{\textit{\neg \land Left:}} \quad \Gamma, \neg A \lor \neg B \vdash \Delta \quad \text{\textit{\neg \land Right:}} \quad \Gamma \vdash \neg A \lor \neg B, \Delta \\
\Gamma, \neg (A \land B) \vdash \Delta
\]

In turn, the adequacy results of the given tableau system carry over, mutatis mutandis, to the ‘generated’ sequent system. I briefly sketch such a system here, omitting (routine) adequacy results.

0.1. Notation. Throughout, \(A\) and \(B\) are any sentences unless otherwise noted; \(\Gamma, \Delta, \Pi\) and \(\Sigma\) are any sets (not multisets) of sentences; and, following convention, the comma is union and \(\Gamma, A\) abbreviates \(\Gamma \cup \{A\}\). I use the turnstile for sequents.

0.2. Axioms

A1. Identity: \(\Gamma, A \vdash A, \Delta\), where \(A\) is any sentence.\(^{11}\)

A2. Exhaustion: \(\Gamma \vdash A, \neg A, \Delta\), where \(A\) is any atomic.\(^{12}\)

\(^9\) I am grateful to a referee for suggesting the inclusion of a sequent system in this paper. I am also grateful to Dave Ripley who not only gave me access to his unpublished work on 3-sided systems, but also independently discovered the tableau-to-gentzen system below. Indeed, any novelty in ‘my’ system below is to be credited equally to Ripley.

\(^10\) I assume familiarity with the target tableau systems here. See any of the cited sources for details, but for the target adequacy results I rely specifically on the system presented by Priest (2008).

\(^11\) An alternative approach is to formulate Identity for \textit{all} literals, and show that it holds for all sentences; however, a direct ‘translation’ of the target tableau system (Priest, 2008), on whose adequacy results I rely, takes Identity for \textit{all} sentences as primitive. (NB: that one needs to take it as primitive at least for all literals is a feature of the non-classical negation at work.)

\(^12\) A negation \(\neg\) connective is sometimes said to be \textit{exhaustive} just when its version of excluded middle holds, that is, just when \(A \lor \neg A\) is valid. The role of our exhaustion axiom here is to ensure LP\(^{+}\)’s exhaustive negation.
0.3. Operational Rules What is peculiar about negation in LP\(^+\) is its interaction with other connectives. Classical rules are fine for conjunction and disjunction; it’s in negation’s interaction with such connectives where the non-classicality emerges. All of this is reflected directly in the familiar tableau system(s) for LP (Priest, 2008), which have independent De Morgan rules governing negation’s interaction with other boolean connectives. (Sometimes, the De Morgan equivalences are given explicitly in the rules; sometimes they’re implied, where a ‘positive’ rule for negated conjunctions might directly branch into the negated disjuncts, rather than to the corresponding disjunction itself.) The rules below simply rewrite such tableau rules in 2-sided set-set sequent form.

0.3.1. Classical \(\land\) rules

\[
\begin{align*}
\land \text{ Left:} & \quad \Gamma, A, B \vdash \Delta \\
\land \text{ Right:} & \quad \frac{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \land B}
\end{align*}
\]

0.3.2. Classical \(\lor\) rules

\[
\begin{align*}
\lor \text{ Left:} & \quad \Gamma, A \lor B \vdash \Delta \\
\lor \text{ Right:} & \quad \frac{\Gamma, B \vdash \Delta}{\Gamma \vdash \Delta, A \lor B} \quad \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, A \lor B}
\end{align*}
\]

0.3.3. Negated conjunctions

\[
\begin{align*}
\neg \land \text{ Left:} & \quad \Gamma, \neg A \lor \neg B \vdash \Delta \\
\neg \land \text{ Right:} & \quad \frac{\Gamma \vdash \Delta}{\Gamma \vdash \neg (A \land B), \Delta}
\end{align*}
\]

0.3.4. Negated disjunctions

\[
\begin{align*}
\neg \lor \text{ Left:} & \quad \Gamma, \neg A \lor \neg B \vdash \Delta \\
\neg \lor \text{ Right:} & \quad \frac{\Gamma \vdash \Delta}{\Gamma \vdash \neg (A \lor B), \Delta}
\end{align*}
\]

0.3.5. Negated negations

\[
\begin{align*}
\neg \neg \text{ Left:} & \quad \Gamma, A \vdash \Delta \\
\neg \neg \text{ Right:} & \quad \frac{\Gamma \vdash \Delta}{\Gamma \vdash \neg \neg A, \Delta}
\end{align*}
\]

0.4. Structural rules Since we’re using sets, we rely on the (free) rules of contraction and permutation. Cut, which is eliminable, is a rule:

\[
\begin{align*}
\text{Cut:} & \quad \frac{\Gamma \vdash \Delta, A, \Sigma \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}
\end{align*}
\]

Weakening rules, namely,

\[
\begin{align*}
\text{Weakening Left:} & \quad \Gamma, A \vdash \Delta \\
\text{Weakening Right:} & \quad \frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta}
\end{align*}
\]

are both eliminable for a standard reason: the ‘nature’ of our sequents—the axioms governing them—already allow side premises (antecedents) and side consequents (succeedents).

0.5. Validity. We say that \(\Gamma \vdash \Delta\) is valid just if derivable via the above rules.

0.6. Some results.

Theorem 0.14 (Adequacy) \(\Gamma \vdash_{\text{lp}}^+ \Delta \iff \Gamma \vdash \Delta\).
Proof. The soundness proof is straightforward. The completeness proof covered by Priest (2008) [pg 157; Thm 8.7.9] for the corresponding tableau system carries over directly, where, as above, the negative tableau tag corresponds to the right position in our sequents, and the positive the left. □

Theorem 0.15 (Cut Elimination) If \(\Gamma \vdash \Delta, A \) and \(\Sigma, A \vdash \Pi \) then \(\Gamma, \Sigma \vdash \Delta, \Pi \).

Proof. The given completeness proof is Cut-free. □

Acknowledgements. In addition to the very useful comments of two anonymous referees, I’m grateful to Phil Bricker, Asher Kach, Marcus Rossberg, Reed Solomon, and Bruno Whittle for discussion, the Holbox community for a beautiful place to think, and very grateful to Aaron Cotnoir, Hartry Field, Graham Priest, and especially Dave Ripley for comments on earlier drafts. Greg Restall put multiple-conclusion logics—and particularly their philosophical applications—in my mind, and I’m grateful for ongoing fruitful discussion with him. One of Restall’s papers (Restall, 2004) emphasizes the important duality on which this paper relies.

I should also briefly note my hope that this paper be part of a bigger project. In fact, my chief interest is not so much in all of the details of LP\(^+\) as it is in the philosophical application: my chief interest—though not in this paper—is in advancing a version of ‘dialetheism’ underwritten by LP\(^+\) along the lines of what Graham Priest and I (in conversation) call the Goodship Project (Goodship, 1996), specifically a version of ‘non-detachable dialetheism’ (that lacks a detachable conditional), but this is for a larger project. In the current paper, I ony present LP\(^+\) and a general perspective on using multiple-conclusion logics, all with the target philosophical application to the idea of ‘default classicality’.

BIBLIOGRAPHY

13 For the interested reader: the given proof (Priest, 2008, pg 157; Thm 8.7.9) is done via so-called relational semantics for LP, which uses ‘exhaustive subsets’ of \(S \times \{1, 0\} \) for interpretations, where a subset is exhaustive just if it contains \(\langle A, 1 \rangle \) or \(\langle \neg A, 1 \rangle \) for each sentence \(A \) in \(S \). Other (obvious) constraints on interpretations are imposed (e.g., requiring that \(\langle A \land B, 1 \rangle \) be in an interpretation just if \(\langle A, 1 \rangle \) and \(\langle B, 1 \rangle \) are in there, etc.). For purposes of the completeness proof—in particular, defining induced interpretation—one may translate the relational semantics into the many-valued semantics (used here) in various ways, the easiest involving two steps. Step one (Dunn, 1966) map our set of semantic values \{1, 0\} into \(\varphi(\{1, 0\}) \) so that the images of 1, 0, and 0 are \{1\}, \{1, 0\}, and \{0\}, respectively. Step two: where \(\rho \subseteq S \times \{1, 0\} \), and \(v \) is one of our LP valuations from \(S \) into (now) \(\varphi(\{1, 0\}) \), set

- \(1 \in v(A) \) iff \(\langle A, 1 \rangle \in \rho \);
- \(0 \in v(A) \) iff \(\langle A, 0 \rangle \in \rho \).

The rest of the proof carries over keeping in mind the ‘positive as left position’ and ‘negative as right position’ ideas.
DEPARTMENT OF PHILOSOPHY
UNIVERSITY OF CONNECTICUT, USA
UNIVERSITY OF OTAGO, NZ
URL: entailments.net

E-mail: jc.beall@uconn.edu