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This chapter attempts to give a brief overview of nonclassical (-logic) theories
of truth. Due to space limitations, we follow a victory-through-sacrifice policy:
sacrifice details in exchange for clarity of big-picture ideas. This policy results in
our giving all-too-brief treatment to certain topics that have dominated discus-
sion in the non-classical-logic area of truth studies. (This is particularly so of the
‘suitable conditoinal’ issue: §4.3.) Still, we present enough representative ideas
that one may fruitfully turn from this essay to the more-detailed cited works for
further study. Throughout – again, due to space – we focus only on the most
central motivation for standard non-classical-logic-based truth theories: namely,
truth-theoretic paradox (specifically, due to space, the liar paradox).

Our discussion is structured as follows. We first set some terminology con-
cerning theories and logics; this terminology allows us to frame the discussion
in a broad-but-clean fashion. (On the logic side, we present a very basic sequent
system for truth and negation – and nothing more.) We then present a stripped-
down version of the liar paradox. The paradox, as we set it up, turns on four
basic rules (not including the truth rules; it’s the job of our target non-classical
truth theories to preserve these in unrestricted form): two rules governing nega-
tion’s behavior, and two rules governing the ‘structure’ of the validity relation
itself. These four rules serve as choice points for the four basic theoretical di-
rections that we sketch. While details, as warned above, are sacrificed for space
and big-picture clarity, we hope that the discussion nonetheless charts the main
directions of non-classical response to basic truth-theoretic paradox.

1 Theories and logics

Since we’ll be considering a variety of logics in this chapter, it will help to first
have some tools to work with. We’ll adapt, and slightly broaden, the framework
of [Restall, 2005] to this end. For purposes of framing our discussion, we take
a theory to be a record of both what the given theorist – one who endorses
the given theory – accepts and what she rejects (with respect to the given
phenomena). Hence, we shall take a theory T to be a pair 〈A,R〉, where A and
R contain what an endorser of T accepts and rejects, respectively.

For some kinds of theory, we might be able to figure out what must be in R
by looking at A (e.g., each negation in A might correspond 1-1 to an entry in
R), or vice versa. This is the usual situation with classical theories and classical
logic: a classical theorist rejects something iff she accepts its negation. We shall
look at two theories that have this feature (see §5.1 and §5.2). On the other
hand, some theories may lack this feature: it might be that neither A nor R
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provides sufficient information to derive the other (e.g., negation might fail to
track rejection). We shall look at two theories that have this feature (see §4.1
and §4.2).

Each sort of theory we discuss comes with a particular logical approach. We
take logics to constrain theories as follows, again following [Restall, 2005]. The
argument from premises Γ to conclusions ∆ is valid (we write Γ ` ∆) iff it’s
out of logical bounds to adopt a theory 〈A,R〉 such that Γ ⊆ A and ∆ ⊆ R. In
short: a valid argument rules out certain theories, notably, those theories that
accept all of the (valid) argument’s premises and reject all of its conclusions.

Finally, the logics that we discuss all exhibit two familiar features:

• reflexivity: A ` A, for any claim A.

• monotonicity: let Γ ⊆ Γ′ and ∆ ⊆ ∆′. If Γ ` ∆, then Γ′ ` ∆′.

In terms of the interplay with theories, reflexivity tells us that no (logically
acceptable) theory 〈A,R〉 involves overlap: A ∩ R = ∅. In other words, logic,
being reflexive, forbids theorists from both accepting and rejecting one and the
same thing.1 For monotonicity, define a T -expanded theory to be any theory
T ′ = 〈A′,R′〉 achieved via superset: A ⊆ A′ and R ⊆ R′. Then monotonic-
ity tells us that if (the given) logic rules out a theory T , it rules out every
T -expanded theory too. In other words, if logic rules out accepting Γ while
rejecting ∆, then adding more acceptances or rejections won’t help.2

2 Reasoning with truth

Throughout the paper, we use T as our truth predicate, and take 〈A〉 to be a
singular term referring to the sentence A. We simply assume that each sentence
A has some such name 〈A〉, without fussing about how 〈A〉 comes to refer to A;
it can be a quote name, a proper name, a definite description, a Gödel code, or
whatever.

There are various familiar principles of reasoning relating A to T 〈A〉; we
consider three candidates: transparency, the T -schema, and capture and release.

Transparency

Transparency is the principle that A and T 〈A〉 are intersubstitutable with
each other in all non-opaque contexts. Ignoring opaque contexts, transparency
amounts to everywhere-intersubstitutability. This requires not only that A
be equivalent to T 〈A〉, but also that A ∧ (¬B ⊃ T 〈C〉) be equivalent to
T 〈T 〈A〉〉 ∧ T 〈¬T 〈B〉 ⊃ C〉, and so on. In short, T s can be added and sub-
tracted willy-nilly, to whole formulas or subformulas. Let formulas that can be
obtained from each other by adding and subtracting T s be called T -variants.

The notion of equivalence in play can be specified in a few ways. As a
constraint on theories, the most natural understanding is this: a theory 〈A,R〉
obeys transparency iff for all A, if A ∈ A then every T -variant of A is in A as
well; and if A ∈ R then every T -variant of A is in R as well. This results in

1For an approach to paradox that does without this constraint, see [Ripley, 2011].
2For convenience, we speak of accepting (set) Γ and rejecting (set) ∆, whereby – note

well – we mean accepting everything in Γ and rejecting everything in ∆, respectively.
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A’s and all its T -variants being equivalent in argument: swapping formulas for
their T -variants never makes a valid argument invalid or vice versa.

The T -schema

The T -schema is the schema A ≡x T 〈A〉, where ≡x is some biconditional or
other – typically, in the first instance, a material biconditional (built from nega-
tion, disjunction, and conjunction in the usual way). [Tarski, 1944] offers this
schema – in material-biconditional form – as a necessary condition on theories
of truth: an adequate theory, he supposes, must have every instance of the T -
schema as a theorem. On our theory-directed interpretation of theoremhood,
this amounts to the following: that a theory must not reject any instances of
the T -schema. If a theory must not reject any instances of A ≡x A, the given
(x-version) T -schema follows from transparency. But not all theories accept all
versions (e.g., material-conditional version) of the T -schema. (See §4.3.)

Capture and release

Capture and release are argument forms or ‘rules of inference’. Capture is the
rule going from A to T 〈A〉, the idea being that the truth predicate ‘captures’
the ‘content’ of A, and release is the converse, the rule from T 〈A〉 to A. On our
interpretation, capture – qua logical rule – rules out any theory that accepts A
but rejects T 〈A〉, and release rules out any theory that accepts T 〈A〉 but rejects
A. Given that logic is reflexive (see above), capture and release follow from
transparency. (And if logic were also to enjoy a ‘deduction theorem’, the T -
schema follows from capture and release; however, some of the logics discussed
below do not enjoy a deduction theorem. See §4.1–§4.3.)

Clearly, transparency, the T -schema, and capture and release have something
in common, but they spell it out in different ways. The relations between them
are sometimes non-obvious, and always depend on particular features of the
background logic. But the core of all three ideas is that A and T 〈A〉 can stand
in for each other in various essential ways. In the nonclassical theories sketched
below, this core idea remains fixed: at the very least, truth plays capture and
release (if not also being transparent).

3 Paradox and classical logic

In many languages (all natural languages and some formal ones), a sentence can
contain a singular term referring to that very sentence itself. For example, the
sentence ‘This very sentence has twenty-three words’ includes the singular term
‘this very sentence’; given a certain context, this term can refer to the sentence
itself, rendering it false.

Our main concern in this section is a liar sentence λ which, one way or
another, just is ¬T 〈λ〉. In other words, λ is a sentence that says of itself (only)
that it is not true. We can produce such a thing in any number of ways, and
we won’t particularly worry about how the trick is pulled here.3 The liar causes
its trouble by, in some sense, being able to stand in for its own negation. (The

3 For concreteness, we can take λ to be the sentence ‘The quoted sentence in footnote 3 is
not true’.
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precise sense of standing in depends on which properties are taken to govern
the truth predicate. We shall, for space reasons, pass over exact details.)

Reasoning classically, we can see that this causes trouble as follows: we
cannot reject both the liar and its negation. But since it can stand in for its
own negation, this means that we cannot reject both the liar and itself; in other
words, we cannot reject it. On the other hand, we cannot accept both the
liar and its negation. Since it can stand in for its own negation, this means
we cannot accept both the liar and itself; in other words, we cannot accept it.
Trouble seems to be afoot.

The classical principles invoked in the foregoing liar-paradoxical reasoning
may be summarised as follows: 1) for any sentence, we cannot reject it together
with its negation; 2) for any sentence, we cannot accept it together with its
negation; 3) if we cannot reject a sentence together with itself, we cannot reject
the sentence; 4) if we cannot accept a sentence together with itself, we cannot
accept the sentence; and 5) if we cannot accept a sentence and cannot reject it,
trouble is afoot.

3.1 The liar in sequent form

We proceed to make the given liar-paradoxical argument precise via a Gentzen-
style sequent calculus. For our purposes, we needn’t worry about conjunction,
disjunction, a conditional, quantifiers, or any of that; the rules governing nega-
tion, along with the so-called structural rules, suffice to cause trouble. (We thus
won’t consider approaches, like supervaluational or subvaluational approaches,
that hinge on fiddling with the behavior of conjunction and disjunction. See
[McGee, 1991, van Fraassen, 1968, van Fraassen, 1970].)

Our sequents are things of the form Γ ` ∆, where Γ and ∆ are finite ‘mul-
tisets’ of formulas. A multiset is just like a set, except things can be members
of it multiple times, and it matters how many times something is a member
[Meyer and McRobbie, 1982a, Meyer and McRobbie, 1982b]. Thus, the multi-
set [A,A] is different from the multiset [A], even though the set {A,A} is the
same set as {A}. Multisets do not pay attention to order; thus, the multiset
[A,B] is the same multiset as [B,A]. In an argument with multiple premises,
the premises are (as usual) interpreted conjunctively; multiple conclusions are
dually interpreted disjunctively.

In our simple Gentzen system (our logic), we take as axioms all sequents of
the form Γ, A ` A,∆,4 and proceed to add three kinds of rules: contraction
rules, a cut rule, and negation rules. The first two kinds are structural: they
don’t involve any particular vocabulary. The last kind is operational: it tells us
what rules negation obeys. First, the contraction rules:

Γ, A,A ` ∆
Contraction L:

Γ, A ` ∆

Γ ` A,A,∆
Contraction R:

Γ ` A,∆
Figure 1: Contraction rules

These tell us that whenever we have multiple occurrences of a premise or a

4We set up our axioms with side premises Γ and side conclusions ∆ so that all the logics we
consider will be monotonic: adding premises or conclusions can never make a valid argument
invalid. Monotonicity does not seem to be implicated in any of the paradoxes of truth, so we
hold it innocent here.
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conclusion in a valid argument, the argument remains valid with just a single
occurrence of that premise or conclusion. They preserve classical validity, and
indeed play a key role in sequent calculi for classical logic. In terms of theories,
they tell us that accepting or rejecting something twice is no stronger than
accepting or rejecting it once.

In addition to the two contraction rules (both structural rules), our liar-
paradoxical reasoning also includes the following structural rule:

Γ ` A,∆ Γ′, A ` ∆′
Cut:

Γ,Γ′ ` ∆,∆′

Figure 2: Cut rule

Cut encodes the transitivity of our consequence relation: if B entails A and A
entails C, then the cut rule guarantees that B entails C directly; the formula
A can be cut out, and argument may proceed directly from B to C. Cut also
preserves classical validity in the usual presentations. Unlike the contraction
rules, however, the rule of cut is typically eliminable; that is, it does not expand
the stock of provable sequents. It merely provides shortcuts, allowing smaller
derivations of some of the very same sequents. In terms of theories, cut is an
extensibility condition: it tells us that if some commitments rule out rejecting
A, and other commitments rule out accepting it, then combining all of those
commitments is ruled out. A theory doesn’t have to actually take a stand on
A; cut requires each theory to at least leave open some stand on A.

Finally, our liar-paradoxical argument depends on operational rules, namely,
rules governing the operator negation. We use the usual classical negation rules:

Γ ` A,∆
¬L:

Γ,¬A ` ∆

Γ, A ` ∆
¬R:

Γ ` ¬A,∆
Figure 3: Negation rules

These rules encode the flip-flop behavior of classical negation. From the axiom
A ` A, they allow us to prove pivotal sequents:

• exclusion: A,¬A `

• exhaustion: ` A,¬A

Exclusion, derived via ¬L and reflexivity, tells us that A and its negation may
not be accepted together. The second, derived via ¬R and reflexivity, tells us
that A and its negation may not be rejected together.

The foregoing axioms and rules are part of the usual sequent presentation
of classical logic; they are enough to reconstruct the above argument for liar-
paradoxical trouble, at least given rules governing truth (and the existence of
a liar sentence, which we assume). For present purposes, we shall work with
capture and release as our rules governing truth, even though the argument
can be equally reconstructed with transparency or (given rules for ≡x, for some
biconditional or other) the T -schema. To accommodate capture and release, we
take as additional axioms every instance of the following two schemas:

• capture: Γ, A ` T 〈A〉,∆
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• release: Γ, T 〈A〉 ` A,∆

With all of this in hand, the liar-paradoxical argument may be run as follows.

p, T 〈λ〉 ` λ
¬R:

p ` λ,¬T 〈λ〉
Contraction R:

p ` λ

λ ` T 〈λ〉, q
¬L:

λ,¬T 〈λ〉 ` q
Contraction L:

λ ` q
Cut:

p ` q

(For the contraction steps, recall that λ just is ¬T 〈λ〉, so we genuinely are
contracting two occurrences of the same sentence.) The resulting sequent p ` q
is absurd: p and q are arbitrary, so a logic that delivers p ` q is one according to
which anything (whatsoever) entails anything else (whatsoever). This, for our
purposes, is completely unacceptable, and so something has to go.5 If we take
the classical principles appealed to in this argument to be nonnegotiable, then
it’s clear where the adjustment has to be: capture and release (and transparency
and the T -schema, as they’re implicated in related versions of this argument)
must be given up, and so must any theory that entails them. A theory that
maintains capture and release, then, must be couched in a logic that does not
accept all of ¬R, ¬L, contraction, and cut. As usual, relaxing logical principles
opens space for new theories, theories that would be ruled out if stronger logical
principles were held fast.

Here, we discuss four logical options in turn: 1) getting rid of ¬R; 2) getting
rid of ¬L; 3) getting rid of cut; and 4) getting rid of contraction. These four
logical options open up different sorts of space for a theory of truth to occupy.
As part of our discussion, we also briefly sketch the sort of theory that can live
in each kind of logical environment.

4 Operational approaches

Operational approaches are ones that target a particular operator (or class of
operators) as the source of liar-paradoxical trouble. In our sample liar derivation
above (see §3.1), the only operator involved is negation. The directions of
operational approaches that we shall present are those that target negation as
the source of trouble – at least initially. (For the potential of additional trouble
arising from Curry’s paradox, see §4.3.)

4.1 Getting rid of ¬R: paracomplete solutions

Getting rid of ¬R amounts to rejecting exhaustion; logical approaches that
take this route are known as paracomplete. Such logics allow for paracomplete
theories, where a theory T = 〈A,R〉 is paracomplete just if both B and ¬B are
inR for some (but not all) sentence(s) B. With respect to the liar, paracomplete
theorists reject λ but also reject ¬λ.

5Some accept the conclusion [Azzouni, 2006, Kabay, 2010], but we won’t rebut their argu-
ments here. Our goal is to sketch some of the motivations for nonclassical theories, and one
such motivation is to avoid this trivialist conclusion.
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4.1.1 Excluded middle

Generally, provided that disjunction ∨ exhibits standard behavior, paracomplete
theorists reject excluded middle in the form

B ` A ∨ ¬A

This is not to say that paracomplete theorists reject all instances of A ∨ ¬A.
Such theorists might think – for extra-logical, certain theory-specific reasons –
that, for some specific fragment of the language (e.g., T -free fragment, physics,
some such), all instances of A ∨ ¬A hold [Field, 2008]. But they reject that
A ∨ ¬A is logically true – holds via logic alone.

The failure of excluded middle affects the options for T -biconditionals in
such theories. This topic is (briefly) discussed below (see §4.3).

4.2 Getting rid of ¬L: paraconsistent solutions

Getting rid of ¬L amounts to rejecting exclusion; logical approaches that take
this route are known as paraconsistent. Such logics allow for paraconsistent
theories, where a theory T = 〈A,R〉 is paraconsistent just if both B and ¬B
are in A for some (but not all) sentence(s) B.6

4.2.1 Explosion

Generally, provided that conjunction ∧ exhibits standard behavior, paraconsis-
tent theorists reject explosion in the form

A ∧ ¬A ` B

This is not to say that paraconsistent theorists accept all instances of A ∧ ¬A.
Such theorists might think – for extra-logical, certain theory-specific reasons –
that, for some specific fragment of the language (e.g., T -free fragment, physics,
some such), all instances of A ∧ ¬A fail to hold [Beall, 2009]. But they reject
that A ∧ ¬A is logically untrue – fails via logic alone.

The failure of explosion affects the options for T -biconditionals in such the-
ories – a topic to which we now (briefly) turn.

4.3 Suitable conditionals and Curry’s paradox

Our given paracomplete and paraconsistent theories wind up with a non-classical
material conditional, where a material conditional A ⊃ B is defined as ¬A∨B.

• Paracomplete: 0 A ⊃ A.

• Paraconsistent: A,A ⊃ B 0 B.

6We should note here that we shall – with reluctance – use ‘paraconsistent theories’ in
a way that coincides with what have come to be called ‘dialetheic theories’. There are im-
portant distinctions to be drawn here, but they would consume too much space for present
purposes. We note that the term ‘dialetheic’ (similarly, ‘dialetheist’) is due to Priest and Rout-
ley [Priest and Routley, 1989, Priest, 2006], who, along with Mortensen [Mortensen, 1995] and
others, were pioneers of such (so-called strong paraconsistent) theories. See too [Asenjo, 1966].
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Hence, in either case, the resulting material conditional is often thought to be
inadequate for purposes of underwriting the T -biconditionals.7 In the paracom-
plete case, the given conditional detaches (i.e., satisfies modus ponens) but fails
to support all instances of the given (material) T -schema: T 〈A〉 ⊃ A and its
converse can fail. In the paraconsistent case, all instances of the given (material)
T -schema hold; however, the given conditional fails to detach.

As a result of these apparent deficiencies, much of the work in paraconsis-
tent and paracomplete responses to paradox has focused on supplementing such
theories with a suitable conditional, one that both detaches and validates all
T -biconditionals [Beall, 2009, Field, 2008, Priest, 2006, Brady, 2006]. But the
task is difficult. What makes the task particularly difficult is Curry’s paradox
[Meyer et al., 1979], which involves (conditional) sentences that say of them-
selves (only) that if they are true then absurdity is true (e.g., that everything is
true).8 In the material-conditional case, Curry’s paradox is nothing more than
a disjunctive version of the liar (e.g., ‘Either I’m not true or absurdity is true’),
which is already treated by standard paraconsistent or paracomplete approaches
to the liar. But when a new ‘suitable conditional’ has been added to the mix,
Curry’s paradox is a distinct – and very, very difficult – problem [Myhill, 1975].
In fact, Curry’s paradox has often been regarded as the hardest obstacle in the
path of para- solutions to paradox [Beall et al., 2006, Field, 2008, Priest, 2006].9

For space reasons, we need omit discussion of the various avenues to-
wards adding detachable, but Curry-paradoxical-safe, T -biconditionals to para-
complete and paraconsistent theories [Beall, 2009, Brady, 2006, Field, 2008,
Priest, 2006]. But we should mention a relatively unexplored alternative: sim-
ply accept the deficiencies of the material T -biconditionals, but respond to them
in some other fashion. One approach is to devise a suitable non-monotonic

7One easy way to establish such ‘inadequacies’ is via a common (sound and
complete) ‘semantics’ for common such logics – for example, Strong Kleene or
K3 [Kleene, 1952, Beall and van Fraassen, 2003] and LP [Asenjo, 1966, Priest, 1979,
Beall and van Fraassen, 2003]. In short: let V contain all (total) maps v : Σ −→ {1, .5, 0}
from sentences into {1, .5, 0} such that v(¬A) = 1 − v(A), and v(A ∧ B) = min{v(A), v(B)}
and v(A ∨ B) = max{v(A), v(B)}. In the paracomplete K3 case, we say that v ∈ V satisfies
A just if v(A) = 1, and dissatisfies A otherwise. In the LP case, we say that v ∈ V satisfies A
just if v(A) ∈ {1, .5}, and dissatisfies A otherwise. In both cases, we say that v ∈ V satisfies a
set Γ ⊆ Σ iff v satisfies each member of Σ, and v ∈ V dissatisfies Γ iff v dissatisfies all elements
of Γ. Finally, we may define, for each of the given logics L, ‘semantic consequence’ `L in the
foregoing terms: Γ `L ∆ iff there’s no v ∈ V that satisfies Γ but dissatisfies ∆. Where L
is taken to be K3, with (dis-) satisfaction defined as above, `L is paracomplete (as an easy
exercise shows); and, dually, `L is paraconsistent where L is taken to be LP, with (dis-) sat-
isfaction defined as above. (NB: we have actually given what we have elsewhere called K3+

and LP+, respectively, in order to maintain uniformity with our multiple-conclusion-based
discussion in sequent-calculus terms. See [Beall, 2011]. Strictly speaking, K3 and LP are the
single(-ton)-conclusion limits of K3+ and LP+, so understood.)

8Worth noting here is that in popular paracomplete logics such as Strong Kleene, the
material conditional fails to enjoy a deduction theorem. Example: A ` A but 0 A ⊃ A.
On the other (dual) side, with the corresponding (dual) paraconsistent logic LP, the other
direction of the deduction theorem fails: ` (A ∧ (A ⊃ B)) ⊃ B but A ∧ (A ⊃ B) 0 B.
In general, for Curry-paradoxical reasons, theories cannot have a deduction theorem for a
detachable conditional – at least if the underlying structural rules contain both transitivity
and contraction. (See §5 for more discussion.))

9While we cannot discuss it, we should mention too that Curry’s paradox equally confronts
‘property theories’ that purport to accommodate properties corresponding to each meaningful
predicate – in short, each meaningful predicate picks out a property exemplified by all and
only the objects of which the predicate is true. Having this sort of theory confronts Curry’s
paradox in the Russell-like form of ‘x does not exemplify x’, etc.
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logic, and try to ‘capture back’ as much of the otherwise lost features of the
T -biconditionals [Goodship, 1996, Priest, 1991]. Another route is to move to a
multiple-conclusion logic and an appropriate philosophy thereof (e.g., one that
sees the work of ‘detachment’ not in a detachable conditional but instead in ex-
tralogical principles that ground the inference from certain premises to certain
conclusions) [Beall, 2011]. The viability of such approaches remains open.

5 Substructural approaches

The above approaches work at the level of operational rules, in particular the
rules governing negation. But classical negation is useful for many purposes. For
example, as we’ve seen above, paracompletists and paraconsistentists alike must
reject the usual understanding of the relations between acceptance, rejection,
and negation: paracomplete theorists reject some A without thereby accepting
¬A, while paraconsistent theorists accept some ¬A without thereby rejecting
A, and so on. In addition, the paracompletist loses the law of excluded middle,
and the paraconsistentist loses explosion, both familiar and useful principles of
inference. Finally, the loss of excluded middle or explosion removes much of the
conditional flavor of the classical material conditional. For these reasons, an
approach that allows us to proceed without losing so much might be thought
superior over the para- accounts.

Here, we briefly outline two substructural approaches. These work at the level
of the structural rules, so they allow for the maintenance of both ¬L and ¬R,
restoring much of the usefulness of classical negation and the classical material
conditional. But they too are not without costs, as we note below.

5.1 Getting rid of cut: nontransitive solutions

The first substructural approach we consider retains the rules of contraction
and dispenses with the rule of cut; this results in a nontransitive logic. On an
approach like this, both of the sequents p ` λ and λ ` q are derivable, but
without the rule of cut there is no way to derive p ` q, so the disaster is averted
at the very last step.

Nontransitive logics have been advanced in [Weir, 2005, Ripley, 2011] for
handling truth-theoretic paradoxes. They block the problematic derivation,
and they do so in a way that allows them to preserve classical operational rules.
(The system presented in [Weir, 2005] preserves many, but not all, classical
operational rules; the system presented in [Ripley, 2011] preserves them all. As
a result, we focus in this section on the latter system.) This allows the resulting
logical systems to behave quite naturally in a number of ways.

By preserving the classical flip-flop behavior of negation, the nontransitive
theorist also preserves the conditional flavor of the material conditional. Non-
transitive logics, like the logic ST discussed in [Ripley, 2011], can maintain the
trinity which the para- approaches, in one way or another, abandon:

• ⊃-identity: ` A ⊃ A

• ⊃ modus ponens: A,A ⊃ B ` B

• deduction theorem: Γ, A ` B,∆ iff Γ ` A ⊃ B,∆.
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In fact, approaches that focus exclusively on operational rules not only must
fail some of these for the material conditional, but in fact must fail some of
these for any connective, due to Curry paradox. (Proof: exercise, but use the
above rules and standard structural rules, plus release and capture.) This means
that nontransitive logics can make do with material conditionals and, in fact,
material T -biconditionals: there is no need either to add a separate ‘suitable
conditional’ or to learn to live with oddly-behaved conditionals – unlike in the
paracomplete and paraconsistent theories, which, as mentioned in §4.3, must
take one of these routes.

There is a reason why nontransitive logics can behave so classically. Recall
that cut, unlike contraction, is eliminable in many presentations of (truth-free)
classical logic; this means that it plays no essential role in any derivation. Any-
thing that can be derived with it can also be derived without it. As our above
liar-based argument shows, this is no longer true when the behavior of truth is
accounted for; with capture and release on board, cut makes a genuine differ-
ence. However, it only makes a difference to derivations in which capture and
release are involved; as a result, one can preserve every classically-valid argu-
ment in a nontransitive logic. As is shown in [Ripley, 2011], one can even ensure
that all of these arguments extend to cover the full, truth-involving, language.

There is thus a clear sense in which such a nontransitive system is not non-
classical: it validates every classically-valid argument. Nonetheless, the loss of
transitivity is at least unfamiliar, and the motivations for adopting such a logic
are very similar to many nonclassicists’ motivations; there is an equally clear
sense in which such an approach is nonclassical. We won’t bother with the
terminological question here.

As we sketched above, the rule of cut amounts to the following constraint on
theories: every theory must leave open either accepting A or rejecting it. Ripley
takes λ to provide a counterexample to this principle and thus to transitivity.
Deriving ` λ thus tells us that it’s incoherent to reject λ, and deriving λ `
that it’s incoherent to accept it. The nontransitivist of this stripe must neither
accept nor reject λ. This is the theory offered of λ’s paradoxicality: it cannot be
accepted or rejected without incoherence. Unlike the operational approaches,
this nontransitive theory maintains the equivalence between accepting ¬A and
rejecting A, and between rejecting ¬A and accepting A. Thus, ¬λ too must
be neither accepted nor rejected. In acceptance, then, this approach is like a
paracomplete approach: it accepts neither λ nor ¬λ. In rejection, it is like a
paraconsistent approach: it rejects neither λ nor ¬λ. However, given our above
definitions, this theory is neither paracomplete nor paraconsistent.10

5.2 Getting rid of contraction: noncontractive solutions

The other sort of substructural approach we’ll consider retains the rule of cut,
and does without the rules of contraction. Such an approach is recommended
and outlined in [Beall and Murzi, 2011, Shapiro, 2010, Zardini, 2011]. On a
noncontractive approach, one can allow that the sequents p ` λ, λ and λ, λ ` q
are derivable, but insist that the sequents p ` λ and λ ` q are not; this blocks

10For a variant nontransitive theory that is both paracomplete and paraconsistent on the
present definitions, see [Ripley, 2011].
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the derivation of p ` q.11
Moreover, it blocks the derivation in a way that allows for the negation rules

and the cut rule to be preserved. This allows the resulting logical systems to
behave quite intuitively in a number of ways. By preserving the classical ‘flip-
flop’ behavior of negation, the noncontractive theorist, like the nontransitive
theorist, preserves the conditional flavor of the material conditional. Noncon-
tractive logics can thus also maintain all of ⊃-identity, modus ponens, and the
deduction theorem.12

If ∧ is the conjunction that reflects the operation of premise combination
(multiplicative conjunction (see footnote 12)), then it is no longer idempotent
on a noncontractive logic; A ∧A is stronger than A alone. Similarly, if ∨ is the
disjunction that reflects the operation of conclusion combination (multiplicative
disjunction (see footnote 12)), then it too is no longer idempotent; A ∨ A is
weaker than A alone. It is these differences that are exploited in the noncon-
tractive approach to paradoxes. By arguments similar to those in §3.1, we have
both ` λ, λ and λ, λ ` without any uses of contraction. If ∧ and ∨ are as
above, this means we have ` λ∨λ and λ∧λ ` ; that is, λ∨λ is a logical truth,
and λ ∧ λ is explosive. Classically, this would be a problem, since classically
A∨A is equivalent to A∧A. But noncontractively this is not so; since λ∨ λ is
weaker than λ ∧ λ, this is no trouble at all.

The noncontractive approach requires us to add subtlety to our account of
theories. Recall that for the other approaches we consider, a theory is a pair
of sets: A, the things accepted by the theory, and R, the things rejected by
the theory. We then said that Γ ` ∆ iff it’s ruled out to accept everything
in Γ and reject everything in ∆. In a noncontractive logic, however, we can
have Γ ` A,A,∆ without Γ ` A,∆: it can be that rejecting A twice is ruled
out but rejecting A once is not. This means that, to specify a theory in a
noncontractive logic, we need to keep track of more than whether something is
accepted or rejected; we also need to keep track of how many times it is accepted
or rejected.

We do this as follows: a theory is still a pair 〈A,R〉. Now, however, A
and R are no longer sets; they are rather ω-long sequences of sets. We index
them with natural numbers for easy reference: thus, A = 〈A1,A2, . . .〉, and
R = 〈R1,R2, . . .〉. For any n, An is the set of formulas that the theory in
question accepts at least n times, and Rn is the set of formulas that the theory
in question rejects at least n times. Given this setup, we have A1 ⊇ A2 ⊇ . . .
and R1 ⊇ R2 ⊇ . . .. Now, we can extend our reading of logical consequence to
noncontractive approaches. We say that Γ ` ∆ iff no theory can accept each
thing in Γ as many times as it appears in Γ and reject each thing in ∆ as many
times as it appears in ∆.13

11If we try to use the rule of cut to combine p ` λ, λ and λ, λ ` q, we can only cut out a
single occurrence of λ from each sequent; we end up with p, λ ` λ, q. This is no problem; in
fact, it’s an axiom!

12Whether ⊃-contraction is preserved depends on the precise rules used to govern ⊃. In
the absence of contraction, conjunction, disjunction, and the conditional come in two distinct
flavors each; these are sometimes called ‘additive’ and ‘multiplicative’ flavors. (In the pres-
ence of both monotonicity and contraction, these two flavors are equivalent.) Noncontractive
approaches retain ⊃-contraction for the additive ⊃, but not the multiplicative.

13Since ` is still reflexive and monotonic, we have it that no Ai can overlap any Rj ;
accepting something any number of times rules out rejecting it any number of times, and vice
versa.
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Since the noncontractive approach maintains that p ` λ, λ, we have it that
no theory can accept p even once and reject λ twice; however, since p 6` λ,14

it’s ok for a theory to accept p once and reject λ once. Similarly, since λ, λ ` q,
no theory can accept λ twice and reject q, but since λ 6` q, it’s ok for a theory
to accept λ once and reject q. Thus, the noncontractivist, on this reading,
maintains that it’s ok for a theory to accept λ and ok for a theory to reject
it, so long as it only does one of the two, and only does it once. The natural
question at this point is: how can it be that accepting or rejecting something
once can be ok when accepting or rejecting it twice is out of bounds?

[Zardini, 2011] suggests that the liar sentence exhibits a kind of instability
reminiscent in some ways of a revision theory (see elsewhere in this volume,
presumably). The idea is that from a single occurrence of λ one may derive
(via the truth rules) ¬λ, but in the process of doing this the original occurrence
of λ was destroyed; thus, we don’t have λ and ¬λ together, which is a good
thing, since A,¬A ` . On the other hand, if we have two occurrences of λ,
we can use one to derive ¬λ. This may destroy it, but we still have another
copy; we then have both λ and ¬λ together, which is unacceptable. This is why
two occurrences of λ are unacceptable, even though one occurrence is not. (A
parallel story is to be told about why two occurrences of λ are unrejectable, even
though a single occurrence is not.) Similarly, [Beall and Murzi, 2011] suggest
thinking of premises as resources to be drawn on in the course of a proof. If
drawing on a premise uses it up, then again we can see why two occurrences
can get us farther than one.

This is all reasonably hand-wavey still, but we don’t doubt it can be made
precise. We leave the details for another occasion.

6 Conclusion

Classical logic (including cut) seems to rule out the possibility of giving a theory
of truth that validates capture and release, or transparency, or the T -schema.
In this chapter, we’ve looked at four ways to modify this logical background to
open up space for such a theory of truth, and looked at the kinds of theory that
fit most naturally with each modification. Two of the modifications were to the
classical theory of negation; these paracomplete and paraconsistent approaches
removed the requirements of exhaustiveness and exclusiveness, respectively. Re-
laxing exhaustiveness allows for rejecting both the liar and its negation; relaxing
exclusiveness allows for accepting them both. Changing the theory of negation
has effects on the theory of the material conditional as well, and these effects
are a central focus of paracomplete and paraconsistent approaches (see §4.3).

The other two modifications were to structural rules; noncontractive and
nontransitive approaches can keep the full classical theory of negation, but must
make adjustments elsewhere, either by supposing that two occurrences of the
same premise or conclusion amount to more than a single occurrence, or else

14The noncontractive theorist had better not accept p ` λ, since then two cuts with the
derivable sequent λ, λ ` q would yield the unacceptable p ` q. Similarly, they had better not
accept λ ` q, since then two cuts with the derivable sequent p ` λ, λ would again yield the
unacceptable p ` q. This is why the noncontractive approach quite crucially must go without
both contraction on the left and contraction on the right; this contrasts with the operational
approaches above, which only need to go without a single negation rule each, and can keep
the other.
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by supposing that logical consequence is nontransitive. Either way, these sub-
structural solutions owe a theory of logical consequence that can make sense of
these adjustments; we’ve tried to sketch what such theories might look like.

Our discussion, for space reasons, has skipped over philosophical arguments
for maintaining (unrestricted) capture and release, and also skipped over topics
(and common terminology) of ‘gaps’, ‘gluts’, and more. These topics are all
important, and skipped here only for space reasons. We leave such topics to
other discussion [Beall and Glanzberg, 2008], including much of the work we’ve
cited throughout.
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